Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Plant Cell Rep ; 43(4): 106, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532109

ABSTRACT

KEY MESSAGE: Exogenous SL positively regulates pepper DS by altering the root morphology, photosynthetic character, antioxidant enzyme activity, stomatal behavior, and SL-related gene expression. Drought stress (DS) has always been a problem for the growth and development of crops, causing significant negative impacts on crop productivity. Strigolactone (SL) is a newly discovered class of plant hormones that are involved in plants' growth and development and environmental stresses. However, the role of SL in response to DS in pepper remains unknown. DS considerably hindered photosynthetic pigments content, damaged root architecture system, and altered antioxidant machinery. In contrast, SL application significantly restored pigment concentration modified root architecture system, and increased relative chlorophyll content (SPAD). Additionally, SL treatment reduced oxidative damage by reducing hydrogen peroxide (H2O2) (24-57%) and malondialdehyde (MDA) (79-89%) accumulation in pepper seedlings. SL-pretreated pepper seedlings showed significant improvement in antioxidant enzyme activity, proline accumulation, and soluble sugar content. Furthermore, SL-related genes (CcSMAX2, CcSMXL6, and CcSMXL3) were down-regulated under DS. These findings suggest that the foliar application of SL can alleviate the adverse effects of drought tolerance by up-regulating chlorophyll content and activating antioxidant defense mechanisms.


Subject(s)
Antioxidants , Capsicum , Heterocyclic Compounds, 3-Ring , Lactones , Antioxidants/metabolism , Capsicum/metabolism , Drought Resistance , Hydrogen Peroxide/metabolism , Oxidative Stress , Chlorophyll/metabolism , Seedlings/metabolism , Droughts
2.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338699

ABSTRACT

The photoperiod is a major environmental factor in flowering control. Water spinach flowering under the inductive short-day condition decreases the yield of vegetative tissues and the eating quality. To obtain an insight into the molecular mechanism of the photoperiod-dependent regulation of the flowering time in water spinach, we performed transcriptome sequencing on water spinach under long- and short-day conditions with eight time points. Our results indicated that there were 6615 circadian-rhythm-related genes under the long-day condition and 8691 under the short-day condition. The three key circadian-rhythm genes, IaCCA1, IaLHY, and IaTOC1, still maintained single copies and similar IaCCA1, IaLHY, and IaTOC1 feedback expression patterns, indicating the conservation of reverse feedback. In the photoperiod pathway, highly conserved GI genes were amplified into two copies (IaGI1 and IaGI2) in water spinach. The significant difference in the expression of the two genes indicates functional diversity. Although the photoperiod core gene FT was duplicated to three copies in water spinach, only IaFT1 was highly expressed and strongly responsive to the photoperiod and circadian rhythms, and the almost complete inhibition of IaFT1 in water spinach may be the reason why water spinach does not bloom, no matter how long it lasts under the long-day condition. Differing from other species (I. nil, I. triloba, I. trifida) of the Ipomoea genus that have three CO members, water spinach lacks one of them, and the other two CO genes (IaCO1 and IaCO2) encode only one CCT domain. In addition, through weighted correlation network analysis (WGCNA), some transcription factors closely related to the photoperiod pathway were obtained. This work provides valuable data for further in-depth analyses of the molecular regulation of the flowering time in water spinach and the Ipomoea genus.


Subject(s)
Ipomoea , Photoperiod , Transcriptome , Ipomoea/genetics , Flowers/genetics , Flowers/metabolism , Circadian Rhythm/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Antioxidants (Basel) ; 12(12)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38136139

ABSTRACT

Drought stress significantly restricts the growth, yield, and quality of peppers. Strigolactone (SL), a relatively new plant hormone, has shown promise in alleviating drought-related symptoms in pepper plants. However, there is limited knowledge on how SL affects the gene expression in peppers when exposed to drought stress (DS) after the foliar application of SL. To explore this, we conducted a thorough physiological and transcriptome analysis investigation to uncover the mechanisms through which SL mitigates the effects of DS on pepper seedlings. DS inhibited the growth of pepper seedlings, altered antioxidant enzyme activity, reduced relative water content (RWC), and caused oxidative damage. On the contrary, the application of SL significantly enhanced RWC, promoted root morphology, and increased leaf pigment content. SL also protected pepper seedlings from drought-induced oxidative damage by reducing MDA and H2O2 levels and maintaining POD, CAT, and SOD activity. Moreover, transcriptomic analysis revealed that differentially expressed genes were enriched in ribosomes, ABC transporters, phenylpropanoid biosynthesis, and Auxin/MAPK signaling pathways in DS and DS + SL treatment. Furthermore, the results of qRT-PCR showed the up-regulation of AGR7, ABI5, BRI1, and PDR4 and down-regulation of SAPK6, NTF4, PYL6, and GPX4 in SL treatment compared with drought-only treatment. In particular, the key gene for SL signal transduction, SMXL6, was down-regulated under drought. These results elucidate the molecular aspects underlying SL-mediated plant DS tolerance, and provide pivotal strategies for effectively achieving pepper drought resilience.

5.
Funct Plant Biol ; 50(11): 870-888, 2023 11.
Article in English | MEDLINE | ID: mdl-37598713

ABSTRACT

Heavy metals and metalloids (HMs) contamination in the environment has heightened recently due to increasing global concern for food safety and human livability. Zinc (Zn2+ ) is an important nutrient required for the normal development of plants. It is an essential cofactor for the vital enzymes involved in various biological mechanisms of plants. Interestingly, Zn2+ has an additional role in the detoxification of HMs in plants due to its unique biochemical-mediating role in several soil and plant processes. During any exposure to high levels of HMs, the application of Zn2+ would confer greater plant resilience by decreasing oxidative stress, maintaining uptake of nutrients, photosynthesis productivity and optimising osmolytes concentration. Zn2+ also has an important role in ameliorating HMs toxicity by regulating metal uptake through the expression of certain metal transporter genes, targeted chelation and translocation from roots to shoots. This review examined the vital roles of Zn2+ and nano Zn in plants and described their involvement in alleviating HMs toxicity in plants. Moving forward, a broad understanding of uptake, transport, signalling and tolerance mechanisms of Zn2+ /zinc and its nanoparticles in alleviating HMs toxicity of plants will be the first step towards a wider incorporation of Zn2+ into agricultural practices.


Subject(s)
Metalloids , Metals, Heavy , Humans , Zinc/metabolism , Metalloids/metabolism , Metals, Heavy/toxicity , Metals, Heavy/analysis , Metals, Heavy/metabolism , Plants/genetics , Soil
6.
Food Res Int ; 170: 112980, 2023 08.
Article in English | MEDLINE | ID: mdl-37316060

ABSTRACT

The increasing health awareness of consumers has made a shift towards vegan and non-dairy prebiotics counterparts. Non-dairy prebiotics when fortified with vegan products have interesting properties and widely found its applications in food industry. The chief vegan products that have prebiotics added include water-soluble plant-based extracts (fermented beverages, frozen desserts), cereals (bread, cookies), and fruits (juices & jelly, ready to eat fruits). The main prebiotic components utilized are inulin, oligofructose, polydextrose, fructooligosaccharides, and xylooligosaccharides. Prebiotics' formulations, type and food matrix affect food products, host health, and technological attributes. Prebiotics from non-dairy sources have a variety of physiological effects that help to prevent and treat chronic metabolic diseases. This review focuses on mechanistic insight on non-dairy prebiotics affecting human health, how nutrigenomics is related to prebiotics development, and role of gene-microbes' interactions. The review will provide industries and researchers with important information about prebiotics, mechanism of non-dairy prebiotics and microbe interaction as well as prebiotic based vegan products.


Subject(s)
Nutrigenomics , Prebiotics , Humans , Fruit , Vegans , Bread
8.
Front Plant Sci ; 14: 1129714, 2023.
Article in English | MEDLINE | ID: mdl-37346140

ABSTRACT

Introduction: The discovery of RT-PCR-based pathogen detection and gene expression analysis has had a transformative impact on the field of plant protection. This study aims to analyze the global research conducted between 2001 and 2021, focusing on the utilization of RT-PCR techniques for diagnostic assays and gene expression level studies. By retrieving data from the 'Dimensions' database and employing bibliometric visualization software, this analysis provides insights into the major publishing journals, institutions involved, leading journals, influential authors, most cited articles, and common keywords. Methods: The 'Dimensions' database was utilized to retrieve relevant literature on RT-PCR-based pathogen detection. Fourteen distinct search queries were employed, and the resulting dataset was analyzed for trends in scholarly publications over time. The bibliometric visualization software facilitated the identification of major publishing journals, institutions, leading journals, influential authors, most cited articles, and common keywords. The study's search query was based on the conjunction 'AND', ensuring a comprehensive analysis of the literature. Results: The analysis revealed a significant increase in the number of scholarly publications on RT-PCR-based pathogen detection over the years, indicating a growing interest and investment in research within the field. This finding emphasizes the importance of ongoing investigation and development, highlighting the potential for further advancements in knowledge and understanding. In terms of publishing journals, Plos One emerged as the leading journal, closely followed by BMC Genomics and Phytopathology. Among the highly cited journals were the European Journal of Plant Pathology, BMC Genomics, and Fungal Genetics and Biology. The publications with the highest number of citations and publications were associated with the United Nations and China. Furthermore, a network visualization map of co-authorship analysis provided intriguing insights into the collaborative nature of the research. Out of 2,636 authors analyzed, 50 surpassed the level threshold, suggesting active collaboration among researchers in the field. Discussion: Overall, this bibliometric analysis demonstrates that the research on RT-PCR-based pathogen detection is thriving. However, there is a need for further strengthening using modern diagnostic tools and promoting collaboration among well-equipped laboratories. The findings underscore the significance of RT-PCR-based pathogen detection in plant protection and highlight the potential for continued advancements in this field. Continued research and collaboration are vital for enhancing knowledge, developing innovative diagnostic tools, and effectively protecting plants from pathogens.

9.
J Hazard Mater ; 454: 131468, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37146338

ABSTRACT

Heavy metals (HMs), like vanadium (V), chromium (Cr), cadmium (Cd), and nickel (Ni) toxicity due to anthropogenic, impair plant growth and yield, which is a challenging issue for agricultural production. Melatonin (ME) is a stress mitigating molecule, which alleviates HM-induced phytotoxicity, but the possible underlying mechanism of ME functions under HMs' phytotoxicity is still unclear. Current study uncovered key mechanisms for ME-mediated HMs-stress tolerance in pepper. HMs toxicity greatly reduced growth by impeding leaf photosynthesis, root architecture system, and nutrient uptake. Conversely, ME supplementation markedly enhanced growth attributes, mineral nutrient uptake, photosynthetic efficiency, as measured by chlorophyll content, gas exchange elements, chlorophyll photosynthesis genes' upregulation, and reduced HMs accumulation. ME treatment showed a significant decline in the leaf/root V, Cr, Ni, and Cd concentration which was about 38.1/33.2%, 38.5/25.9%, 34.8/24.9%, and 26.6/25.1%, respectively, when compared with respective HM treatment. Furthermore, ME remarkably reduced the ROS (reactive oxygen species) accumulation, and reinstated the integrity of cellular membrane via activating antioxidant enzymes (SOD, superoxide dismutase; CAT, catalase; APX, ascorbate peroxidase; GR, glutathione reductase; POD, peroxidase; GST, glutathione S-transferase; DHAR, dehydroascorbate reductase; MDHAR, monodehydroascorbate reductase) and as well as regulating ascorbate-glutathione (AsA-GSH) cycle. Importantly, oxidative damage showed efficient alleviations through upregulating the genes related to key defense such as SOD, CAT, POD, GR, GST, APX, GPX, DHAR, and MDHAR; along with the genes related to ME biosynthesis. ME supplementation also enhanced the level of proline and secondary metabolites, and their encoding genes expression, which may control excessive H2O2 (hydrogen peroxide) production. Finally, ME supplementation enhanced the HM stress tolerance of pepper seedlings.


Subject(s)
Melatonin , Metals, Heavy , Melatonin/pharmacology , Cadmium/toxicity , Cadmium/metabolism , Hydrogen Peroxide/metabolism , Antioxidants/metabolism , Oxidative Stress , Metals, Heavy/toxicity , Metals, Heavy/metabolism , Superoxide Dismutase/metabolism , Chromium/metabolism , Glutathione Reductase/metabolism , Chlorophyll/metabolism , Glutathione/metabolism , Seedlings/metabolism
10.
Planta ; 257(6): 115, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37169910

ABSTRACT

MAIN CONCLUSION: Melatonin has a protective effect against heavy metal stress in plants by immobilizing HM in cell walls and sequestering them in root cell vacuoles, reducing HM's translocation from roots to shoots. It enhances osmolyte production, increases antioxidant enzyme activity, and improves photosynthesis, thereby improving cellular functions. Understanding the melatonin-mediated response and signalling can sustain crop production in heavy metal-stressed soils. Melatonin is a pleiotropic signal molecule that plays a critical role in plant growth and stress tolerance, particularly against heavy metals in soil. Heavy metals (HMs) are ubiquitously found in the soil-water environment and readily taken up by plants, thereby disrupting mineral nutrient homeostasis, osmotic balance, oxidative stress, and altered primary and secondary metabolism. Plants combat HM stress through inbuilt defensive mechanisms, such as metal exclusion, restricted foliar translocation, metal sequestration and compartmentalization, chelation, and scavenging of free radicals by antioxidant enzymes. Melatonin has a protective effect against the damaging effects of HM stress in plants. It achieves this by immobilizing HM in cell walls and sequestering them in root cell vacuoles, reducing HM's translocation from roots to shoots. This mechanism improves the uptake of macronutrients and micronutrients in plants. Additionally, melatonin enhances osmolyte production, improving the plant's water relations, and increasing the activity of antioxidant enzymes to limit lipid peroxidation and reactive oxygen species (ROS) levels. Melatonin also decreases chlorophyll degradation while increasing its synthesis, and enhances RuBisCO activity for better photosynthesis. All these functions contribute to improving the cellular functions of plants exposed to HM stress. This review aims to gain better insight into the melatonin-mediated response and signalling under HM stress in plants, which may be useful in sustaining crop production in heavy metal-stressed soils.


Subject(s)
Melatonin , Metals, Heavy , Soil Pollutants , Melatonin/pharmacology , Antioxidants/metabolism , Metals, Heavy/toxicity , Metals, Heavy/metabolism , Plants/metabolism , Soil Pollutants/metabolism , Soil
11.
Front Plant Sci ; 14: 1172255, 2023.
Article in English | MEDLINE | ID: mdl-37229136

ABSTRACT

Basmati rice is inherently sensitive to various environmental stresses. Abrupt changes in climatic patterns and freshwater scarcity are escalating the issues associated with premium-quality rice production. However, few screening studies have selected Basmati rice genotypes suitable for drought-prone areas. This study investigated 19 physio-morphological and growth responses of 15 Super Basmati (SB) introgressed recombinants (SBIRs) and their parents (SB and IR554190-04) under drought stress to elucidate drought-tolerance traits and identify promising lines. After two weeks of drought stress, several physiological and growth performance traits significantly varied between the SBIRs (p ≤ 0.05) and were less affected in the SBIRs and the donor (SB and IR554190-04) than SB. The total drought response indices (TDRI) identified three superior lines (SBIR-153-146-13, SBIR-127-105-12, SBIR-62-79-8) and three on par with the donor and drought-tolerant check (SBIR-17-21-3, SBIR-31-43-4, SBIR-103-98-10) in adapting to drought conditions. Another three lines (SBIR-48-56-5, SBIR-52-60-6, SBIR-58-60-7) had moderate drought tolerance, while six lines (SBIR-7-18-1, SBIR-16-21-2, SBIR-76-83-9, SBIR-118-104-11, SBIR-170-258-14, SBIR-175-369-15) had low drought tolerance. Furthermore, the tolerant lines exhibited mechanisms associated with improved shoot biomass maintenance under drought by adjusting resource allocation to roots and shoots. Hence, the identified tolerant lines could be used as potential donors in drought-tolerant rice breeding programs, administered for subsequent varietal development, and studied to identify the genes underlying drought tolerance. Moreover, this study improved our understanding of the physiological basis of drought tolerance in SBIRs.

12.
Environ Res ; 231(Pt 1): 115941, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37100366

ABSTRACT

Endocrine-disrupting chemicals (EDCs) are of interest in human physiopathology and have been extensively studied for their effects on the endocrine system. Research also focuses on the environmental impact of EDCs, including pesticides and engineered nanoparticles, and their toxicity to organisms. Green nanofabrication has surfaced as an environmentally conscious and sustainable approach to manufacture antimicrobial agents that can effectively manage phytopathogens. In this study, we examined the current understanding of the pathogenic activities of Azadirachta indica aqueous formulated green synthesized copper oxide nanoparticles (CuONPs) against phytopathogens. The CuONPs were analyzed and studied using a range of analytical and microscopic techniques, such as UV-visible spectrophotometer, Transmission electron microscope (TEM), Scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transformed infrared spectroscopy (FTIR). The XRD spectral results revealed that the particles had a high crystal size, with an average size ranging from 40 to 100 nm. TEM and SEM images were utilized to verify the size and shape of the CuONPs, revealing that they varied between 20 and 80 nm. The existence of potential functional molecules involved in the reduction of the nanoparticles was confirmed by FTIR spectra and UV analysis. Biogenically synthesized CuONPs revealed significantly enhanced antimicrobial activities at 100 mg/L concentration in vitro by the biological method. The synthesized CuONPs at 500 µg/ml had a strong antioxidant activity which was examined through the free radicle scavenging method. Overall results of the green synthesized CuONPs have demonstrated significant synergetic effects in biological activities which can play a crucial impact in plant pathology against numerous phytopathogens.


Subject(s)
Metal Nanoparticles , Humans , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Copper/toxicity , Copper/chemistry , Plant Extracts/chemistry , Oxides , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/chemistry
13.
Planta ; 257(4): 80, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36913037

ABSTRACT

MAIN CONCLUSION: Abiotic stresses adversely affect the productivity and production of vegetable crops. The increasing number of crop genomes that have been sequenced or re-sequenced provides a set of computationally anticipated abiotic stress-related responsive genes on which further research may be focused. Knowledge of omics approaches and other advanced molecular tools have all been employed to understand the complex biology of these abiotic stresses. A vegetable can be defined as any component of a plant that is eaten for food. These plant parts may be celery stems, spinach leaves, radish roots, potato tubers, garlic bulbs, immature cauliflower flowers, cucumber fruits, and pea seeds. Abiotic stresses, such as deficient or excessive water, high temperature, cold, salinity, oxidative, heavy metals, and osmotic stress, are responsible for the adverse activity in plants and, ultimately major concern for decreasing yield in many vegetable crops. At the morphological level, altered leaf, shoot and root growth, altered life cycle duration and fewer or smaller organs can be observed. Likewise different physiological and biochemical/molecular processes are also affected in response to these abiotic stresses. In order to adapt and survive in a variety of stressful situations, plants have evolved physiological, biochemical, and molecular response mechanisms. A comprehensive understanding of the vegetable's response to different abiotic stresses and the identification of tolerant genotypes are essential to strengthening each vegetable's breeding program. The advances in genomics and next-generation sequencing have enabled the sequencing of many plant genomes over the last twenty years. A combination of modern genomics (MAS, GWAS, genomic selection, transgenic breeding, and gene editing), transcriptomics, and proteomics along with next-generation sequencing provides an array of new powerful approaches to the study of vegetable crops. This review examines the overall impact of major abiotic stresses on vegetables, adaptive mechanisms and functional genomic, transcriptomic, and proteomic processes used by researchers to minimize these challenges. The current status of genomics technologies for developing adaptable vegetable cultivars that will perform better in future climates is also examined.


Subject(s)
Proteomics , Vegetables , Plant Breeding , Genomics , Crops, Agricultural , Stress, Physiological/genetics
14.
Life (Basel) ; 13(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36836849

ABSTRACT

Fruit orchards are frequently irrigated with brackish water. Irrigation with poor quality water is also a major cause of salt accumulation in soil. An excess of salts results in stunted growth, poor yield, inferior quality and low nutritional properties. Melatonin is a low molecular weight protein that shows multifunctional, regulatory and pleiotropic behavior in the plant kingdom. Recently, its discovery brought a great revolution in sustainable fruit production under salinity-induced environments. Melatonin contributed to enhanced tolerance in Zizyphus fruit species by improving the plant defense system's potential to cope with the adverse effects of salinity. The supplemental application of melatonin has improved the generation of antioxidant assays and osmolytes involved in the scavenging of toxic ROS. The tolerance level of the germplasm is chiefly based on the activation of the defense system against the adverse effects of salinity. The current study explored the contribution of melatonin against salinity stress and provides information regarding which biochemical mechanism can be effective and utilized for the development of salt-tolerant germplasm in Zizyphus.

15.
Int J Phytoremediation ; 25(1): 9-26, 2023.
Article in English | MEDLINE | ID: mdl-35298319

ABSTRACT

Boron (B) is an essential micronutrient, crucial for the growth and development of crop plants. However, the essential to a toxic range of B in the plant is exceptionally narrow, and symptoms develop with a slight change in its concentration in soil. The morphological and anatomical response, such as leaf chlorosis, stunted growth, and impairment in the xylem and phloem development occurs under B-toxicity. The transport of B in the plant occurs via transpiration stream with the involvement of B-channels and transporter in the roots. The higher accumulation of B in source and sink tissue tends to have lower photosynthetic, chlorophyll content, infertility, failure of pollen tube formation and germination, impairment of cell wall formation, and disruption of membrane systems. Excess B in the plant hinders the uptake of other micronutrients, hormone transport, and metabolite partitioning. B-mediated reactive oxygen species production leads to the synthesis of antioxidant enzymes which help to scavenge these molecules and prevent the plant from further oxidative damage. This review highlights morpho-anatomical, physiological, biochemical, and molecular responses of the plant under B toxicity and thereby might help the researchers to understand the related mechanism and design strategies to develop B tolerant cultivars.


The physio-biochemical and molecular responses and mechanism of B uptake under its toxic condition have been illustrated. The spatial distribution of boron under its toxic condition and its accumulation in the plant might be regulated with sugar alcohols (polyols). This review throws light on the elevated level of B in the soil-plant system and provides management strategies for alleviating B toxicity in the plant.


Subject(s)
Antioxidants , Boron , Boron/toxicity , Biodegradation, Environmental , Antioxidants/metabolism , Oxidative Stress , Plants/metabolism , Plant Leaves/metabolism , Plant Roots
16.
Antioxidants (Basel) ; 11(12)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36552621

ABSTRACT

Photosynthesis is an important plant metabolic mechanism that improves carbon absorption and crop yield. Photosynthetic efficiency is greatly hampered by cold stress (CS). Melatonin (ME) is a new plant growth regulator that regulates a wide range of abiotic stress responses. However, the molecular mechanism of ME-mediated photosynthetic regulation in cold-stressed plants is not well understood. Our findings suggest that under low-temperature stress (15/5 °C for 7 days), spraying the plant with ME (200 µM) enhanced gas exchange characteristics and the photosynthetic pigment content of pepper seedlings, as well as upregulated their biosynthetic gene expression. Melatonin increased the activity of photosynthetic enzymes (Rubisco and fructose-1, 6-bisphosphatase) while also enhancing starch, sucrose, soluble sugar, and glucose content under CS conditions. Low-temperature stress significantly decreased the photochemical activity of photosystem II (PSII) and photosystem I (PSI), specifically their maximum quantum efficiency PSII (Fv/Fm) and PSI (Pm). In contrast, ME treatment improved the photochemical activity of PSII and PSI. Furthermore, CS dramatically reduced the actual PSII efficiency (ΦPSII), electron transport rate (ETR) and photochemical quenching coefficient (qP), while enhancing nonphotochemical quenching (NPQ); however, ME treatment substantially mitigated the effects of CS. Our results clearly show the probable function of ME treatment in mitigating the effects of CS by maintaining photosynthetic performance, which might be beneficial when screening genotypes for CS tolerance.

17.
Front Plant Sci ; 13: 1025497, 2022.
Article in English | MEDLINE | ID: mdl-36466290

ABSTRACT

Regeneration is extremely important to pepper genetic development; however, the molecular mechanisms of how the callus reactivates cell proliferation and promotes cell reprogramming remain elusive in pepper. In the present study, C. baccatum (HNUCB81 and HNUCB226) and C. chinense (HNUCC22 and HNUCC16) were analyzed to reveal callus initiation by in vitro regeneration, histology, and transcriptome. We successfully established an efficient in vitro regeneration system of two cultivars to monitor the callus induction of differential genotypes, and the regenerated plants were obtained. Compared to C. chinense, there was a higher callus induction rate in C. baccatum. The phenotype of C. baccatum changed significantly and formed vascular tissue faster than C. chinense. The KEGG enrichment analysis found that plant hormone transduction and starch and sucrose metabolism pathways were significantly enriched. In addition, we identified that the WOX7 gene was significantly up-regulated in HNUCB81 and HNUCB226 than that in HNUCC22 and HNUCC16, which may be a potential function in callus formation. These results provided a promising strategy to improve the regeneration and transformation of pepper plants.

18.
Biology (Basel) ; 11(11)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36358265

ABSTRACT

Drought is a major abiotic factor and affects cereal-based staple food production and reliability in developing countries such as Pakistan. To ensure a sustainable and consistent food supply, holistic production plans involving the integration of several drought mitigation approaches are required. Using a randomized complete block design strategy, we examined the drought-ameliorating characteristics of plant growth-promoting rhizobacteria (PGPR) and nanoparticles (NPs) exclusively or as a combined application (T4) through three stages (D1, D2, and D3) of wheat growth (T1, control). Our field research revealed that Azospirillum brasilense alone (T2) and zinc oxide NPs (T3) improved wheat plant water relations, chlorophyll, proline, phenolics and grain quality, yield, and their allied traits over the stressed treatments. Specifically, the best outcome was observed in the combined treatment of PGPR and ZnO NPs (T4). Interestingly, the combined treatment delivered effective drought mitigation through enhanced levels of antioxidants (15% APX, 27% POD, 35% CAT, 38% PPO and 44% SOD) over controls at the grain-filling stage (GFS, D3 × T1). The 40% improvements were recorded under the combined treatment at GFS over their respective controls. Their combined usage (PGPR and ZnO NPs) was concluded as an effective strategy for building wheat resilience under drought, especially in arid and semi-arid localities.

19.
Funct Plant Biol ; 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36356932

ABSTRACT

Solanaceous crops act as a source of food, nutrition and medicine for humans. Soil salinity is a damaging environmental stress, causing significant reductions in cultivated land area, crop productivity and quality, especially under climate change. Solanaceous crops are extremely vulnerable to salinity stress due to high water requirements during the reproductive stage and the succulent nature of fruits and tubers. Salinity stress impedes morphological and anatomical development, which ultimately affect the production and productivity of the economic part of these crops. The morpho-physiological parameters such as root-to-shoot ratio, leaf area, biomass production, photosynthesis, hormonal balance, leaf water content are disturbed under salinity stress in Solanaceous crops. Moreover, the synthesis and signalling of reactive oxygen species, reactive nitrogen species, accumulation of compatible solutes, and osmoprotectant are significant under salinity stress which might be responsible for providing tolerance in these crops. The regulation at the molecular level is mediated by different genes, transcription factors, and proteins, which are vital in the tolerance mechanism. The present review aims to redraw the attention of the researchers to explore the mechanistic understanding and potential mitigation strategies against salinity stress in Solanaceous crops, which is an often-neglected commodity.

20.
Int J Mol Sci ; 23(19)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36232603

ABSTRACT

The interaction between selective nutrients and linked genes involving a specific organ reveals the genetic make-up of an individual in response to a particular nutrient. The interaction of genes with food opens opportunities for the addition of bioactive compounds for specific populations comprising identical genotypes. The slight difference in the genetic blueprints of humans is advantageous in determining the effect of nutrients and their metabolism in the body. The basic knowledge of emerging nutrigenomics and nutrigenetics can be applied to optimize health, prevention, and treatment of diseases. In addition, nutrient-mediated pathways detecting the cellular concentration of nutrients such as sugars, amino acids, lipids, and metabolites are integrated and coordinated at the organismal level via hormone signals. This review deals with the interaction of nutrients with various aspects of nutrigenetics and nutrigenomics along with pathways involved in nutrient sensing and regulation, which can provide a detailed understanding of this new leading edge in nutrition research and its potential application to dietetic practice.


Subject(s)
Diet , Nutrigenomics , Amino Sugars , Hormones , Humans , Lipids , Nutrients , Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...